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Comparative study of embedding methods
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Embedding experimental data is a common first step in many forms of dynamical analysis. The choice of
appropriate embedding parameters~dimension and lag! is crucial to the success of the subsequent analysis. We
argue here that the optimal embedding of a time series cannot be determined by criteria based solely on the
time series itself. Therefore we base our analysis on an examination of systems that have explicit analytic
representations. A comparison of analytically obtained results with those obtained by an examination of the
corresponding time series provides a means of assessing the comparative success of different embedding
criteria. The assessment also includes measures of robustness to noise. The limitations of this study are
explicitly delineated. While bearing these limitations in mind, we conclude that for the examples considered
here, the best identification of the embedding dimension was achieved with a global false nearest neighbors
argument, and the best value of lag was identified by the mutual information function.
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I. INTRODUCTION

Embedding experimental data is a first step common
many forms of dynamical analysis. In this process a sc
time series$x1 ,x2 ,...,xn% is used to construct vectors inRm

of the formXi5(xi ,xi 1L ,xi 12L ,...,xi 1(m21)L), wherem is
the embedding dimension andL is the lag. For proper value
of m andL a smooth dynamicsF: Xi→Xi 11 is defined which
reconstructs the underlying dynamics. Measures of dyna
cal behavior are then based on the quantitative characte
tion of the m-dimensional geometry of the set$Xi%. The
mathematical foundation of this procedure is the Take
Mañé embedding theorem@1,2#. This result has been re
viewed by Noakes@3# and Sauer, Yorke, and Casdagli@4#. A
summary statement of the theorem is given in the Appen

The choice of embedding parametersm andL is crucial to
the subsequent analysis. An inappropriate choice can re
in the spurious indication of nonlinear structure where no
is present@5,6#. Conversely, an inappropriate choice can
sult in the failure to resolve structures that are indeed pre
in the data. There is a large, growing, and somewhat confl
ing literature describing candidate criteria for selecting e
bedding parameters@7–22#.

There is no single correct answer. The optimal embedd
strategy may depend on both the time series and the ap
measure. That is, the embedding criterion that is optim
when studying fluid flow data may not be optimal in th
analysis of a time series from an electroencephalogr
Similarly, a procedure for selectingm andL when the corre-
lation dimension is to be estimated may not succeed w
calculating Lyapunov exponents. Therefore the limitations
this investigation should be explicitly recognized. While o
timistically we hope to distinguish the methods that are
fective for a majority of time series and applied measur
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the minimal result should be the identification of those e
bedding methods that are most appropriate for a specific t
series and applied measure. This is, however, a better a
native than arbitrary parameter specification.

An examination of the prior literature on this subject r
veals a most interesting problem. Suppose two embedd
criteria are used to select embedding parameters for a
series. Let (m1 ,L1) and (m2 ,L2) denote the results. Which
is the better embedding? To answer this question we nee
adjudicating measureM, such that if M15M (m1 ,L1) is
greater thanM25M (m2 ,L2) we conclude that the first em
bedding is the better of the two. Following this reasoning
program of comparison testing of embedding criteria cons
of two elements:~i! competing embedding criteria that a
used to select embedding parametersm and L, and ~ii ! a
metricM that is used to choose between them. Unfortunat
this program has a fundamental logical flaw. The adjudic
ing measureM is itself an embedding criterion. By construc
tion, the best embedding is the (m,L) pair that maximizesM.
The selection of an embedding therefore becomes a c
strained optimization: maximizeM (m,L) subject to the con-
straints thatm and L are positive integers, but this analys
does not, and cannot, identifyM. A circular logic has resulted
in which embedding criteria are assessed by an adjudica
criterion which is itself an embedding criterion. The reaso
ing outlined above leads to the following conclusion: t
optimal embedding for a time series cannot be determined
criteria based solely on the time series itself.~In this context,
we wish to acknowledge the importance of Rapoport’s wo
@23# on the analysis of paradox.! Failure to recognize this
point has resulted in an embedding criterion–adjudicat
measure–embedding criterion circularity that has charac
ized much of the literature on this subject.

In order to break this cycle, we must bring to the analy
knowledge that cannot be provided by the time series its
We can accomplish this by basing our investigation on
analysis of time series that were generated by dynamical
©2003 The American Physical Society10-1
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CELLUCCI, ALBANO, AND RAPP PHYSICAL REVIEW E67, 066210 ~2003!
tems that have explicit analytical representations
n-dimensional differential or functional differential equ
tions. Because the analytical representations are availa
we can apply forms of analysis that cannot be applied to
time series itself. Specifically, we can use procedures
determining the largest Lyapunov exponent that requ
equations for the vector field throughout the state space
structed by Benettinet al. @24,25#. These values provide
gold standard for subsequent comparisons. The first phas
the investigation proceeds in five steps.

~1! Three model systems whose governing equations
be expressed analytically are identified and time series
generated from each of them.

~2! The largest Lyapunov exponents of these systems
determined using the analytical expressions of the ve
field.

~3! Five criteria for selecting embedding parameters
described and applied to the time series generated by
model system.

~4! Using these embedding parameters, the larg
Lyapunov exponent of each time series is calculated for
five sets of embedding parameters using a procedure
lished by Gao and Zheng@12# that can be applied to time
series data.

~5! The Lyapunov exponents computed from the time
ries are compared against those determined by the more
haustive analytically based calculations. The criterion t
most consistently reproduces the reference values of
Lyapunov exponents is deemed to be the most successf

The second phase of the investigation examines the
bustness of these conclusions when sensitivity to nois
considered. This component of the analysis includes b
computationally generated and experimental data.

II. SPECIFICATION OF THE EXAMPLE SYSTEMS AND
THEIR LARGEST LYAPUNOV EXPONENTS

Three example systems will be considered in this stu
The first is the Ro¨ssler system@26#:

dx/dt52~y1z!,

dy/dt5x1ay,

dz/dt5b1z~x2g!,

a50.15, b50.20, g510.00, dt5.125.

A 10 000-element time series was computed after the tra
tory converged onto the attractor using a sixth order Run
Kutta-Hutta algorithm @27#. The second system is th
Mackey-Glass equation@28#:

dx/dt5
ax~ t2t!

11xc~ t2t!
2bx,

a50.20, b50.10, c510.00, t517.

The parametert is a time delay. Thus, this is an infinit
dimensional functional differential equation. A 10 000-po
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trajectory on the attractor was computed with a time inter
of dt50.10. The third system is identical to the second e
cept that the time delay is set equal tot5150.

The largest Lyapunov exponent of each of these syst
was calculated by a procedure published by Benettinet al.
@24,25# that exploits the availability of analytical expressio
for the vector field in the behavior space. The analysis beg
by considering a smalln-dimensional sphere of initial con
ditions. Over time this sphere evolves into an ellipsoid. T
Lyapunov exponents determine the rate of its growth. In
Benettin et al. computational procedure, the trajectories
points on the surface of the sphere are approximated by
action of the linearized equations of motion. The vectors
repeatedly reorthonormalized using the Gram-Schmidt p
cedure. The Gram-Schmidt reorthonormalization does no
fect the direction of the first vector in this system, so it ten
to seek out the direction in tangent space correspondin
the most rapid growth. This provides an estimate of the la
est Lyapunov exponent. The values of the Lyapunov ex
nents were found to be 0.129~Rössler!, 0.0071 ~Mackey-
Glasst517), and 0.0023~Mackey-Glasst5150).

III. EMBEDDING CRITERIA

As previously stated, an inappropriate choice of emb
ding dimension can result in a failure to characterize
structure of the time series. Ifm is too small, the embedde
manifold is folded onto itself, and elements of its structu
will be lost to the analysis. However, a strategy of simp
using a very large embedding dimension for all cases is e
less successful. The data requirements for the analysis
crease with the embedding dimension. If the value ofm is
too great, structure is dispersed through a high dimensio
space, and the time series is indistinguishable from no
Thus we conclude that the embedding dimension must
large enough but no larger.

Several methods have been developed to estimate
minimum acceptable embedding dimension@7,17,20,29#. In
this paper we compare methods based on the concep
minimizing the number of false nearest neighbors. LetXi be
an embedded point inRm, and letXj be the point closest to
it. Consider the map ofXi andXj from Rm to Rm11. If the
(m11)-dimensional points are no longer nearest neighb
thenXi andXj in Rm are false nearest neighbors. False ne
est neighbors can result when the embedded manifold
folded onto itself inRm. When the embedding dimension
increased, an unfolding of the embedded set can separaXi
andXj . The argument of false nearest neighbors conclu
that the minimum acceptable embedding dimension can
established by determining a measure of the frequency
false nearest neighbors as a function of embedding dim
sion. The optimal embedding dimensionmopt is the smallest
dimension that results in a stable minimum of this measu

Thus, the underlying assumption of the methods co
pared in this paper holds that, whenm,mopt and m is in-
creased fromm to m11, the metric that is used to reflect th
frequency of false nearest neighbors will decrease. Fom
>mopt, further increases in the embedding dimension w
not result in a significant decrease in this metric. All of t
0-2
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COMPARATIVE STUDY OF EMBEDDING METHODS PHYSICAL REVIEW E67, 066210 ~2003!
criteria compared in this paper are constructed on this a
ment. They differ, however, in the metric that is used
characterize the frequency of false nearest neighbors.
choice of this metric is by no means trivial.Xi andXj in Rm

can be false nearest neighbors under this definition e
though the data were appropriately embedded. This can
pen because they were positioned on opposite sides
separatrix or, more commonly, as the result of noise in
served data. A simple exhaustive calculation of the freque
of false nearest neighbors is not necessarily the most
cessful. Measures that, for example, incorporate a time
tory of local trajectories centered onXi andXj might prove
to be more robust against noise. This is one of the quest
examined in this investigation.

A. Method of Gao and Zheng

Gao and Zheng@11,12# use the following argument to
construct a measure that reflects the incidence of false n
est neighbors. Consider two vectorsXi and Xj . If they are
genuine nearest neighbors, and if the flow is uniform in t
region of the state space, thenXi 1k and Xj 1k will also be
close to each other for smallk. The statistical nature of this
argument is apparent when it is recognized that domain
the state space where flow separates provide exception
this generalization. Additionally, for bounded chaotic sy
tems, this will cease to be true ifk is large. IfXi andXj are
false nearest neighbors, they are, by definition, close to e
other only because the embedded set has been folded
itself in a neighborhood containing these points. Therefo
the flow controlling the evolution ofXi in state space is no
necessarily similar to the flow controlling the evolution
Xj . Compared to genuine nearest neighbors, there is a hi
probability that the trajectories corresponding toXi and Xj
will separate.

The method of Gao and Zheng is based on the follow
argument. LetuXi ,Xj u denote the Euclidean distance betwe
points Xi and Xj . Typically, uXi 1k ,Xj 1ku/uXi ,Xj u will be
greater ifXi andXj are false nearest neighbors. A success
embedding is one that will, on average, reduce this ra
Therefore, they construct the following measure:

L~k,m,L !5
1

Nref
(
i , j

lnH uXi 1k ,Xj 1ku
uXi ,Xj u

J .

From this equation it is seen that four parameters mus
specified,Nref , k, m, and L. In our implementation of the
Gao-Zheng criterion, the average is taken fromNref points
Xi , randomly selected from points in the embedding spa
In the calculations of Fig. 1, 10 000 data points are used
Nref5500. After Xi has been chosen, anXj is found that
satisfies two criteria. First, we requireuXi ,Xj u<r , that is, the
average is taken over points that are initially close to e
other. For example, in the calculations shown in Fig. 1,r is
10% of the standard deviation of the time series. Numer
experiments indicated that the results are robust aga
variations inr. This condition alone is insufficiently restric
tive. If this were the sole criterion used to selectXj , L could
emphasize those points that are close toXi because the cor
06621
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responding data points inXj were sampled at approximatel
the same time. If an oversampled signal is being examin
this can lead to a spurious indication of structure in the s
space. In order to control against this possibility, we impo
a second condition onXj , namely, a minimum elapsed tim
between sampled data pointsXi and Xj . This is done by
requiring u i 2 j u to be greater than some minimum tempo
spacing, denotedkseparation, which can be expressed in term
of the autocorrelation time. This is an application of a pr
cedure originally introduced by Theiler@44# in the specific
context of calculating the correlation dimension. In the c
culations shown in Fig. 1, we requiredu i 2 j u>25. This is
equal to the first minimum of the autocorrelation functio
After Xi is selected at random,Xj is determined.Xj is speci-
fied by the value ofj closest toi that satisfiesu i 2 j u>25 and
uXi ,Xj u<r . If no value ofj satisfying these criteria exists,Xi
is discarded and another random selection is made.

Another parameter to be specified is the evolution timek.
If k is too small, the noise in the time series could obsc
the separation of trajectories corresponding to false nea
neighbors. Ifk is too large, the exponential separation
trajectories in chaotic systems will end and the distinct
between false and genuine nearest neighbors will diminis
is therefore necessary to fixk in terms of a natural time scal
of the time series. In our calculations we setk equal to the
autocorrelation time~the time required for the autocorrela
tion function to drop to 1/e of its initial value!. The depen-
dence of the method on the choice of evolution time is c
sidered again in the presentation of the method
characteristic length.

The calculation ofL(k,m,L) can be reduced to the fol
lowing sequential process.

~1! For a specifiedm,L pair, the mean distance betwee
points in the embedding space and the standard deviatio
that mean are determined. This can be done by an exhau

FIG. 1. L as a function of lagL for the Rössler attractor. The
original time series contains 10 000 points at sampling intervaldt
50.125. Parameterr is 10% of the standard deviation of the orig
nal data andk59. L is calculated form52,3, . . . ,5 andL
52,3, . . . ,15. Nref5500. The minimum sampling separationu i
2 j u>25.
0-3
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CELLUCCI, ALBANO, AND RAPP PHYSICAL REVIEW E67, 066210 ~2003!
calculation of alli,j pairs or by a random sample that is lar
enough to achieve a stable value. The local neighborh
radiusr is specified in terms of the standard deviation of t
time series, for example, 10%.

~2! Nref is specified. This is the number of reference poi
Xi that will be randomly sampled from the embedding spa

~3! kseparation, the minimum temporal separation of refe
ence pointXi and its neighborXj , must be specified. As
discussed in the preceding text, the first minimum of
autocorrelation function of the original time series can
used.

~4! The value ofk, the evolution time, must be dete
mined. We have used the autocorrelation time~the time re-
quired for the autocorrelation function to drop to 1/e of its
original value!.

~5! The following computation is performed for each
the Nref reference pointsXi randomly sampled from the
embedding space. A pointXj is found that satisfies the
two criteria uXi ,Xj u<r and u i 2 j u>kseparation. If no point
Xj satisfying these conditions can be found, thenXi is
discarded and replaced with another randomly selected re
ence point. Using a successfulXi ,Xj pair, the value of
ln$uXi1k ,Xj1ku/uXi ,Xju% is computed.

~6! The average value of ln$uXi1k ,Xj1ku/uXi ,Xju% is deter-
mined. This is the value ofL(k,m,L).

We used the Ro¨ssler equations to generate the results p
sented in Fig. 1. The original time series contained 10 0
points, andNref was set equal to 500. The local neighborho
radiusr is 10% of the standard deviation of the time seri
The evolution timek is 9, which is the corresponding auto
correlation time.kseparationis 25, which is the first minimum
of the autocorrelation function. The initial embedding dime
sion m is fixed at 2 andL is calculated as a function of th
lag L. This process is repeated for increasing values ofm. As
shown in this figure, the value ofL decreases significantly a
m is increased from 2 to 3. However, successive increase
m do not result in further significant decreases inL. There-
fore it is concluded thatm53 is an appropriate embeddin
dimension. The best value ofL corresponds to theL at the
first minimum value ofL in the m53 case. This results in
r
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fixing L58. This result is consistent with those published
Gao and Zheng@11#. The results obtained when this criterio
was applied to the other time series in the test collection
reported in Sec. III.

B. Method of Schuster

The procedure for estimating an optimal embedding
mension presented by Schuster and his colleagues@29# ex-
amines the relationship between sets of nearest neighbo
successive embeddings. LetXi

(m) be an embedded point in
Rm, where it should be recalled that the construction ofXi

(m)

includes the specification of the lagL. In this procedure, the
Nn nearest neighbors ofXi

(m) are identified. They are denote
by Xi ,1

(m) ,Xi ,2
(m) , ...,Xi ,Nn

(m) . They are ordered in the sense th

Xi ,1
(m) is the closest neighbor ofXi

(m) , Xi ,2
(m) is the next closest,

and so on. In their implementation, Liebertet al. set Nn
510 for an example problem containing 10 000 data poin

Liebert et al. consider the impact of increasingm to m
11 on the nearest neighbor set. LetXi

(m11) denote the ele-
ment in Rm11 corresponding toXi

(m) in Rm. Let Xi ,k
(m11)

denote thekth nearest neighbor ofXi
(m11) in Rm11, where

again the nearest neighbors are ordered withXi ,1
(m11) being

the closest toXi
(m11) . It should be stressed that poin

Xi ,k
(m11) are defined by their proximity toXi

(m11) in Rm11.
They are not necessarily the projections ofXi ,k

(m) to Rm11.
~We use the term projection to denote a relationship defi
by embedding processes in two consecutive dimensions!

If an embedding were ideal, then the transition fromRm

to Rm11 would preserve nearest neighbor relationships, a
Xi ,k

(m11) would be the (m11)-dimensional point correspond
ing to Xi ,k

(m) in Rm. The Liebert et al. metric provides a
means of quantifying the degree to which this relations
fails to be true. LetZi ,1

(m11) be the point inRm11 correspond-
ing to Xi ,1

(m) , that is, the projection ofXi ,1
m to Rm11. Zi ,k

(m11)

is defined analogously fork52, . . . ,Nn . The relationships
between these points is depicted below;↑ denotes the pro-
jection fromRm to Rm11:
Xi ,Nn

~m11!
¯ Xi ,2

~m11! Xi ,1
~m11! Xi

~m11! Zi ,1
~m11! Zi ,2

~m11!
¯ Zi ,Nn

~m11!
Rm11

↑ ↑ ↑ ↑
Xi

~m! Xi ,1
~m! Xi ,2

~m!
¯ Xi ,Nn

~m!
Rm.
be-

la-
In the case of an ideal embedding,Zi ,1
(m11)5Xi ,1

(m11) and the
ratio

uXi
~m11!2Zi ,1

~m11!u

uXi
~m11!2Xi ,1

~m11!u

is equal to 1. IfZi ,1
(m11)ÞXi ,1

(m11) , then this ratio is greate
than 1. The product
)
k51

Nn H uXi
~m11!2Zi ,k

~m11!u

uXi
~m11!2Xi ,k

~m11!uJ
is an empirical measure of the degree of correspondence
tween the sets$Xi ,k

(m11)% and$Zi ,k
(m11)%. A large value of this

product will indicate a distortion of nearest neighbor re
tionships that results from an insufficient value ofm.
0-4
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The Liebertet al. analysis also considers the relationsh
between the nearest neighbor set ofXi

(m11) in Rm11 and the
corresponding set of points inRm. As previously defined,
Xi ,k

(m11) is thekth nearest neighbor ofXi
(m11) in Rm11. Let
-

u

fo

e

06621
Vi ,k
m denote the corresponding point inRm. In analogy with

the previous diagram, the relationship between these se
given below. In this case,↓ indicates the projection from
Rm11 to Rm:
Xi ,Nn

~m11!
¯ Xi ,2

~m11! Xi ,1
~m11! Xi

~m11! Rm11

↓ ↓ ↓ ↑
Vi ,Nn

~m!
¯ Vi ,2

~m! Vi ,1
~m! Xi

~m! Xi ,1
~m! Xi ,2

~m!
¯ Xi ,Nn

~m!
Rm.
-

f

the
f

st

sing

e

The corresponding product is

)
k51

Nn H uXi
~m!2Xi ,k

~m!u

uXi
~m!2Vi ,k

~m!uJ .

For the pointXi
(m) , Liebertet al. defineWi(m,L) as

Wi~m,L !5)
k51

Nn H S uXi
~m11!2Zi ,k

~m11!u

uXi
~m11!2Xi ,k

~m11!u D S uXi
~m!2Xi ,k

~m!u

uXi
~m!2Vi ,k

~m!u D J .

Wi(m,L) is averaged over a set ofNref points selected ran
domly in the Rm embedding space. Liebertet al. sample
10% of the embedded points.W(m,L) is defined as

W~m,L !5 ln^Wi~m,L !&,

where

^Wi~m,L !&5
1

Nref
(
i 51

Nref

Wi~m,L !.

As in the case of the Gao-Zheng criterion,m is fixed and
W(m,L) is calculated as a function ofL for progressively
increasing values ofm.

For specified values ofm andL, W(m,L) is calculated by
the following procedure.

~1! Nref , the number of references points to be used, m
be specified. Liebertet al. @29# use 10% of the total.

~2! Nn , the number of nearest neighbors computed
each reference point, must be specified. Liebertet al. @29#
useNn510.

~3! A reference pointXi
(m) is randomly selected from th

embedded set inRm. For eachXi
(m) , the following calcula-

tions are performed.~a! TheNn nearest neighbors ofXi
(m) are

determined. They are denoted byXi ,1
(m) ,Xi ,2

(m) , ...,Xi ,Nn

(m) . ~b!

The projections of these nearest neighbors intoRm11 are
determined. They are denoted by Zi ,1

(m11) ,
Zi ,2

(m11) ,...,Zi ,Nn

(m11) . ~c! Xi
(m11) is the projection ofXi

(m) into

Rm11. The Nn nearest neighbors ofXi
(m11) are determined.

They are denoted byXi ,1
(m11) ,Xi ,2

(m11) ,...,Xi ,Nn

(m11) . ~d! The
st

r

projections ofXi , j
(m11) to Rm are determined. They are de

noted byVi ,1
(m) ,Vi ,2

(m) , ...,Vi ,Nn

(m) . ~e! The productWi(m,L) is

calculated:

Wi~m,L !5)
k51

Nn H S uXi
~m11!2Zi ,k

~m11!u

uXi
~m11!2Xi ,k

~m11!u D S uXi
~m!2Xi ,k

~m!u

uXi
~m!2Vi ,k

~m!u D J .

~4! W(m,L) is the logarithm of the average value o
Wi(m,L):

W~m,L !5 lnH 1

Nref
(
i 51

Nref

Wi~m,L !J .

Figure 2 shows plots ofW(m,L) versusL using data from
the previously defined implementation of the Ro¨ssler equa-
tions. The best choice of embedding corresponds to
smallest value ofm that produces the limiting behavior o
W(m,L). In this example, this is seen to correspond tom
53. The best choice ofL corresponds to the lag at the fir
minimum value ofW(m,L) in them53 case. This results in
L58. As an additional test, a time series was generated u

FIG. 2. W(m,L) versus lag for the Ro¨ssler data set. In thes
calculations 10 000 points were used.W is calculated form52, 3,
and 4; L52,3, . . . ,15. Number ofreference pointsNref5300.
Number of nearest neighborsNn525.
0-5
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the Lorenz equationsdx/dt5a(y2x), dy/dt5x(R2z),
dz/dt5xy2bz, a516.0, R545.92, b54, anddt50.125.
The Liebertet al. procedure was applied to this time seri
and produced embedding parameters in agreement with t
found using a procedure published by Wolfet al. @30#.

The most computationally demanding element of this p
cedure is the identification of theNn nearest neighbors o
eachXi . ~Similarly, the search for the single nearest neig
bor Nn51 which is implemented in the method of glob
false nearest neighbors, is the most computationally exp
sive element of that method.! There is a large literature de
scribing procedures that can be modified to produce meth
that will accelerate nearest neighbor searches inRm @span-
ning trees@31#, KD trees@32#, K trees@33–36# ~structures for
optimizing orthogonal range searches!#. In our recent calcu-
lations, we used our implementation of Schreiber’s linke
list search procedure@37#.

C. Method of characteristic length

As previously described, the Gao-Zheng method is ba
on the rate of separation of points that are initially close
each other. It is therefore closely related to the estimation
the largest Lyapunov exponent. This relationship is dev
oped explicitly in the next section. There are operational d
ficulties associated with the Gao-Zheng method. They t
on the choice of the evolution time parameterk, which speci-
fies the time over which the divergence of trajectories
observed. The evolution time before two nearby points
come uncorrelated is a function of both the largest Lyapu
exponent and the initial separation of these points. Howe
without some knowledge of the spatial extent of the syste
attractor, it is difficult to estimate when the evolution time
too large. The method of characteristic length addresses
point by estimating the size of the attractor and using t
length in an assessment of the separation time of trajecto
that are close initially. For a given scalar time series,
characteristic lengthJ(m,L) is a function ofm andL and is
defined as

J~m,L !5^uXi ,Xj u&,

where ^¯& denotes the average Euclidean distance ta
over randomly selected pairs of points in the embedd
space.J(m,L) provides an imperfect measure of the size
the attractor. In our calculations, the number of pairs
points used to calculateJ(m,L) was 15% of the number o
embedded points. It should be noted that in the case
J(m,L) calculations, the choice ofi and j is random and is
not subject to the restrictions oni,j pairs employed in the
calculation ofL(k,m,L).

The argument for indirectly assessing the frequency
false nearest neighbors with the method of character
length follows a development analogous to that used to c
struct the Gao-Zheng criterion. Suppose thatXi and Xj ,
points that are initially close in phase space, are true nea
neighbors. The time required for them to separate to so
fraction of J(m,L) will depend on the Lyapunov exponen
We denote this separation time asTJ . If, in contrast,Xi and
Xj are false nearest neighbors, they are close to each o
because the embedded set is folded onto itself in a neigh
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hood containing these points. Under these circumstances
time evolution ofXi andXj could display very different dy-
namical behavior. This would typically result in a fast
separation of their trajectories.

On average, therefore, we expect the separation timeTJ
for false nearest neighbors to be shorter than the ave
separation time for true nearest neighbors. An average s
ration time is calculated form52 as a function ofL. As m is
increased the frequency of false nearest neighbors is red
and the average separation time increases. The embed
dimensionm is increased until a further increase inm does
not have an impact on the average separation time.

The procedure can be operationalized by the follow
sequence of calculations. For a givenm,L pair, C(m,L) is
calculated in the following steps.

~1! The characteristic lengthJ(m,L) is calculated by the
averageJ(m,L)5^uXi ,Xj u&, wherei,j are selected randomly
The number of pairs used to form the average is equa
15% of the number of points in the embedding space.

~2! Nref , the number of reference points used in the se
ration time calculations, is specified. In the calculatio
shown in Fig. 3, where 10,000 points are in the time ser
Nref is set equal to 500.

~3! A value of r is specified. The specification used in o
implementation of the Gao-Zheng method is also used in
Fig. 3 calculations. Specifically,r is set equal to 10% of the
standard deviation of the original time series.

~4! The embedded pointXi is chosen at random.Xj is
defined as the value ofj closest toi that satisfies the condi
tions that u i 2 j u is greater than the signal’s autocorrelatio
time and uXi ,Xj u<r . If no value of j satisfying these two
conditions exists,Xi is discarded and another point is s
lected.

~5! TJ(Xi ,Xj ) is determined. This is the minimum inte
gerk required foruXi 1k ,Xj 1ku to exceed 0.4J(m,L). If these
points do not separate to this distance,Xi is discarded and
another point is chosen.

FIG. 3. C(m,L) versus lag for the Ro¨ssler data set. In thes
calculations 10 000 points were used.r 510% of the standard de
viation of the data set. C is calculated form52, 3, and 4;L
52,3, . . . ,12. N5500 andu i 2 j u>25.
0-6
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~6! This process is repeated untilNref values ofTJ(Xi ,Xj )
have been obtained.C(m,L) is their average:

C~m,L !5
1

Nref
(
i , j

TJ~Xi ,Xj !.

As shown in Fig. 3,m is first set equal to 2 andC(m,L)
is calculated as a function ofL. The embedding dimension i
then increased andC(m,L) is again calculated. The increas
in C(m,L) that was anticipated by the preceding argumen
observed. Further increases inm do not, however, result in
further increasesC(m,L); therefore it is concluded thatm
53 is an effective choice. The indicated value of lag cor
sponds to the first maximum ofC(m,L) when m53. This
results inL58. The procedure was also applied to the L
renz time series, and again results consistent with thos
Wolf et al. @30# were obtained.

D. Global false nearest neighbors and the autocorrelation
function

The three methods presented thus far determine the
bedding dimension and lag simultaneously. In this section
combine a method for choosing a proper embedding dim
sion, the method of global false nearest neighbors, wit
separate method for determining the lag based on the a
correlation function. This criterion for specifying lag sets
equal to the value of delay corresponding to the first zero
the autocorrelation function. The autocorrelation functi
C(k) for a time seriesxi , i 51,2, . . . ,N is given by

C~K !5

(
i 51

N2k

~xi 1k2 x̄!~xi2 x̄!

(
i 51

N2k

~xi2 x̄!2

where x̄5
1

N (
i 51

N

xi .

The determination of the embedding dimension usin
global false nearest neighbors argument begins with an
bedding inRm which uses the lag established using the
tocorrelation function. LetXi denote an element in this em
bedding, and letXi

NN5(xi
NN ,xi 1L

NN ,...,xi 1(m21)L
NN ) denote its

nearest neighbor. The Euclidean distance between these
points inRm is denoted byuXi2Xi

NNum :

uXi2Xi
NNum

2 5 (
k50

m21

~xi 1kL2xi 1kL
NN !2.

The Euclidean distance between the projection of these
points intoRm11 is given by

uXi2Xi
NNum11

2 5uXi2Xi
NNum

2 1~xi 1mL2xi 1ml
NN !2.

Abarbanel@38# definesR, a measure of the distance betwe
Xi and Xi

NN in Rm11 normalized against their distance
Rm, as

R5H uXi2Xi
NNum11

2 2uXi2Xi
NNum

2

uXi2Xi
NNum

2 J 1/2

,
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Xi
NN is deemed to be a false nearest neighbor ofXi in Rm

if R exceeds the constantRtol . The choice ofRtol was dis-
cussed by Abarbanel@38#. We follow his recommendation
here and setRtol515. The use of global false nearest neig
bors to determine the embedding dimension is implemen
by the following procedure.

~1! L is set equal to the first zero of the autocorrelation
~2! Rtol is set equal to a fixed value.
~3! The percentage of false nearest neighbors is calcul

as a function ofm using the following procedure.~a! For
every pointXiPRm, the nearest neighborXi

NN is determined.
~b! The corresponding value ofR is calculated.~c! If R
.Rtol , thenXi

NN is deemed to be a false nearest neighbor
Xi .

~4! The value ofm is increased until false nearest neig
bors are no longer observed or until the frequency of fa
nearest neighbors is below an acceptable value.

Figure 4 shows the results obtained with the Ro¨ssler data.
The value of the lag determined from the autocorrelat
function was 9. Using this value of the lag, the procedu
identifiedm54 as the optimal embedding dimension.

E. Global false nearest neighbors and mutual information

This procedure differs from the immediately precedi
method in the criterion used to determine the lag. The sa
procedure, global false nearest neighbors, is used to d
mine the embedding dimension. Choosing the lagL to be the
first zero crossing ofC(k) means that, on average, the o
servationsxi and xi 1L will be linearly independent. This is
the optimal linear choice, from the point of view of predic
ability in a least squares sense ofxi 1L from a knowledge of
xi . Although historically it has been widely used to dete
mine the time delay, some authors now question its use w
the underlying process is nonlinear@38#. Abarbanel@38# and

FIG. 4. Percentage of false nearest neighbors versus embed
dimension for the Ro¨ssler data set. In these calculations 10 0
points were used.m52,3, . . . ,6;L59. The threshold is equal to
15.
0-7
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others~notably Fraser@10#! have therefore argued that th
first minimum of the average mutual information function
a more appropriate choice of the lag, because mutual in
mation can be regarded as a nonlinear analog of the auto
relation function. The general case of the definition of mut
information begins with two setsA5$ai% andB5$bj%. The
mutual information is the amount learned by the measu
ment ofai about the value ofbj . In bits, it is given by

log2F PAB~ai ,bj !

PA~ai !PB~bj !
G ,

wherePAB is the joint probability distribution, andPA and
PB are the individual probability distributions. We note th
if a measurement ofai is completely independent ofbj , then
the amount of information gained aboutbj by measuringai ,
which is the mutual information, is zero. The average mut

FIG. 5. Mutual information versus lag for the Ro¨ssler data set.
In these calculations 10 000 points were used.
06621
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information is defined as the average over all measurem
of this statistic between setsA andB @38#:

I AB5 (
ai ,bj

PAB~ai ,bj !log2F PAB~ai ,bj !

PA~ai !PB~bj !
G .

The specific application to a time series follows immediat
from this definition. As before, letxi , i 51,2, . . . ,N, denote
an observed time series. Define the setA5$ai% as the value
of x at time i, xi , and the setB as the value ofx at time i
1t, xi 1t . The mutual information becomes a function
the time shift variablet,

I ~t!5 (
xi ,xi 1t

P~xi ,xi 1t!log2F P~xi ,xi 1t!

P~xi !P~xi 1t!
G .

This measure tells us the average amount of informa
learned aboutxi 1t by measuringxi . Figure 5 shows the
results using the Ro¨ssler equations. We conclude thatL
512 is the indicated choice.

IV. CALCULATING THE LARGEST LYAPUNOV
EXPONENT FROM A TIME SERIES

As outlined in the Introduction, these five methods f
determining embedding parameters were applied to the t
test cases. The results are displayed in Table I. In that ta
GFNN-A identifies the embedding parameters determined
the autocorrelation function combined with the method
global false nearest neighbors and GFNN-MI identifies
results obtained when the lag was determined by calcula
the mutual information.

The comparative success of these embedding param
was assessed by using them in calculations of the lar
Lyapunov exponent. For the purposes of this test, the emb
ding criterion that produces an embedding which in turn p
duces a value for the largest Lyapunov exponent that is c
TABLE I. Embedding parameters and Lyapunov exponents calculated by different methods.

Method Rössler
Mackey-Glass

t517
Mackey-Glass

t5150

Embedding parameters
m,L m,L m,L

Gao-Zheng 3,8 3,14 6,26
Schuster 3,9 3,10 3,32

Characteristic length 3,8 4,10 5,17
GFNN-A 4,9 4,18 6,82
GFNN-MI 4,12 4,23 6,82

Lyapunov exponents

Benettin 0.129 0.0071 0.0023
Gao-Zheng 0.128 0.0106 0.0014
Schuster 0.135 0.0092 0.0011

Characteristic length 0.128 0.0073 0.0015
GFNN-A 0.124 0.0089 0.0020
GFNN-MI 0.125 0.0085 0.0020
0-8
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est to the Benettinet al. reference value is deemed to be t
most successful. Of the many candidate methods for ca
lating Lyapunov exponents from a time series, we chose
procedure published by Gao and Zheng@12#, which is
closely related to their procedure for identifying appropria
embedding parameters. The largest Lyapunov exponentl is a
quantitative characterization of the rate at which two initia
close points diverge in phase space under the assumption
this separation is exponential,

uXi 1k ,Xj 1ku5uXi ,Xj ueldt,

wheredt is the sampling interval. As in the case of estim
ing embedding parameters with the Gao-Zheng method,
choice of Xi ,Xj pairs cannot be arbitrary. First, the poin
must be close initially. Therefore, as before, we requ
uXi ,Xj u<r where r is expressed in terms of the standa
deviation of the original time series. Second, the points m
have a minimum initial temporal separation; that is, we
quire u i 2 j u>kseparationwherekseparationis expressed in term
of the autocorrelation function. If these conditions are m
and if the separation ofXi and Xj is exponential, then the
average value of ln$uXi1k ,Xj1ku/uXi ,Xju% when plotted as a
function of time will be linear and have the slopel. An
example using the Ro¨ssler time series is shown in Fig. 6. Th
function

1

Nref
(
i , j

lnH uXi 1k ,Xj 1ku
uXi ,Xj u

J
is plotted as a function of time for six values ofr ~1%,
2%, . . . ,6% of thestandard deviation of the time series!.
This function exhibits a linear region with a slope that
independent ofr, followed by a region where the slope ten
to zero. The slope is approximately 0.07, which is in agr
ment with previously published estimates@30#. The results

FIG. 6. L versus evolution timek for the Rössler data set. In
these calculations 10 000 points were embedded using the em
ding parameters m53 and L58. Neighborhood size r
51%,2%,...,6% of the timeseries’ standard deviation.Nref

5500. The top line corresponds tor 51%, and the bottom corre
sponds tor 56%. u i 2 j u>40.
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obtained when this procedure for estimatingl was applied to
the test systems are given in Table I.

Table I shows the embedding parameters and Lyapu
exponents generated by each method. Calculations using
Rössler time series produced similar embedding parame
and in all cases the Lyapunov exponents were close to
Benettin reference value. In the trials using the Macke
Glass system witht517, some differences in embeddin
parameters and performance were observed. The charac
tic length, GFNN-A, and GFNN-MI methods give a som
what better performance. It is only in the group of calcu
tions that examine the Mackey-Glass system witht5150
that we begin to see a notable difference in performance
this case, only the GFNN-A and GFNN-MI methods result
in an estimated exponent that was close to the refere
value. While one might argue that the characteristic len
was better for the Ro¨ssler system and thet517 Mackey-
Glass system, only the two global false nearest neigh
methods performed reasonably well in all three trials.

V. EXPERIMENTAL DATA AND SENSITIVITY TO NOISE

A long and melancholy history demonstrates that pro
dures that are successful in the examination of computat
ally generated noise-free data can fail when applied to no
time series. This concern motivated the next phase of
investigation in which the robustness of the embedding
teria to noise is investigated.

The three model systems used in the earlier investiga
~Rössler, Mackey-Glasst517, and Mackey-Glasst5150)
were used. Two experimental time series were also adde
the test collection. The first is an electroencephalograp
time series recorded during a clinically induced generaliz
seizure. Details of the recording protocol are given by C
lucci et al. @39#. The second experimental time series is
resting, eyes-closed electroencephalogram~EEG! recorded
from a healthy control subject. Watanabeet al. @40# de-
scribed the recording procedure. The incorporation of exp
mental data into the study raises a procedural dilemma
the case of the computational systems, the Benettinet al.
@24,25# procedure could be used to obtain high quality ref
ence values for the Lyapunov exponents. In the case of
experimental data, this is not an option. We must theref
identify an alternative procedure for assessing an embed
criterion’s robustness to noise. We operationally define a
terion as robust if the computational addition of noise to
original time series has a minimal impact on the cumulat
distribution of interpoint distances in the embedding spa
This is implemented in the following five-step procedure.

~1! Let S denote the original time series. The embeddi
criterion is applied toS to produce embedding parametersm
andL.

~2! The time seriesS is embedded using these paramet
and the cumulative distribution of interpoint distances in t
embedding space is calculated as a function of scale vari
r. If there areN data points inS, then there areK5N2(m
21)L points in the embedding space. LetNP denote the

ed-
0-9
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TABLE II. Kolmogorov-SmirnovPnull .

Gao-Zheng Schuster
Characteristic

length GFNN-A GFNN-MI

Rössler
10 dB 0.914 0.999 0.999 0.999 0.999
5 dB 0.513 0.989 0.999 0.999 0.999
0 dB 0.002 0.014 0.179 0.084 0.152

Mackey-Glass,t517
10 dB 0.999 0.295 0.927 0.999 0.999
5 dB 0.999 0.999 0.999 0.999 0.999
0 dB 0.124 0.401 no result 0.013 0.013

Mackey-Glass,t5150
10 dB 0.999 0.362 0.999 0.999 0.999
5 dB 0.999 0.999 0.999 0.999 0.942
0 dB no result 0.999 no result 0.213 0.055

EEG seizure
10 dB no result 0.999 0.999 0.999 0.999
5 dB no result 0.999 no result 0.845 0.999
0 dB no result 0.484 no result 0.065 0.972

EEG rest
10 dB 0.999 0.999 0.999 0.999 0.999
5 dB 0.999 0.557 0.999 0.998 0.999
0 dB 0.596 0.999 0.999 0.186 0.999
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number of distinct pairs of points. The cumulative distrib
tion CS(r ) is given by

CS~r !5
1

NP
(
i 51

K21

(
j 5 i 11

K

Q~r 2uXi2Xj u!

whereQ is the Heaviside function.
~3! Gaussian distributed noise is added to the time se

S. The amplitude of noise is determined by a previou
specified signal to noise ratio. The resulting time series
denotedS* . The same embedding criterion is applied toS*
to produce embedding parametersm* andL* .

~4! Using m* andL* , the cumulative distribution ofS* ,
CS* (r ), is computed.

~5! The two cumulative distributions are compared us
the Kolmogorov-Smirnov statistic@41,42#. The Kolmogorov-
SmirnovD is the maximum value of the absolute differen
between two cumulative distributions:

D5 max
2`,x,`

uCS~r !2CS* ~r !u.

The null hypothesis holds that the two data sets are dr
from the same parent distribution. The probability of the n
hypothesis is given by

Pnull5QKSH FANE10.121
0.11

ANE
GDJ ,

QKS~l!52(
j 51

`

~21! j 21e22 j 2l2
,
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whereN1 andN2 are the number of points in theS andS*
embedding spaces. SinceS* is constructed by adding nois
to S, N1 andN2 are equal.

Operationally, an embedding criterion is deemed to
robust to noise if noise has a minimal impact on the cum
lative distribution of interpoint distances in the embeddi
space. This is indicated by a high value ofPnull . The results
are presented in Table II. A value of ‘‘no result’’ is entered
this table if the embedding criterion in question failed
converge on values ofm and L. Three noise levels corre
sponding to signal-to-noise ratios of 10, 5, and 0 dB w
computed.

Once again there is little criterion-dependent difference
the results obtained with the Ro¨ssler data. All of the methods
with the exception of the Gao-Zheng method are robust t
signal-to-noise ratio~SNR! of 5 dB ~that is, a noise variance
that is approximately 32% of the signal variance!. They all
fail uniformly at 0 dB, where the noise variance and t
signal variance are equal. In the trials using the Mack
Glass equation, we see a somewhat larger difference in
formance among the methods. The Gao-Zheng, characte
length, GFNN-A, and GFNN-MI methods all perform we
down to a SNR of 5 dB. Strangely, Schuster’s method p
formed better at the lower SNR of 0 dB than it did at 10 d
Repeated trials produced similar results, and we can offe
reasonable explanation for this particular outcome.

In the trials using experimental data, we note even lar
differences in performance among the five methods. In ad
tion to GFNN-MI outperforming the other four methods, w
0-10
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also note the failure of the Gao-Zheng and characteri
length methods to specify embedding parameters for th
trials. Specifically, in the trials using seizure data, the ch
acteristic length method failed for SNR’s of 5 dB and low
Additionally, the Gao-Zheng method failed for the origin
as well as the noise corrupted data sets for the case o
seizure data. These time series are apparently too noiseli
produce interpretable results when the Gao-Zheng and c
acteristic length procedures are applied.

VI. CONCLUSIONS

We conclude that in these trials the global false nea
neighbors method outperformed the other three proced
for determining the embedding dimension. Additional
when used in combination with GFNN, the first minimum
the mutual information function gave a more success
value of the lag than the first zero of the autocorrelat
function. However, before generalizing these results inapp
priately, other factors should be considered. One must as
a given method consistent in its interpretation? That is, co
different researchers interpret the results in the same way
this regard, GFNN-A has advantages over the other meth
A disadvantage that those procedures share is the nee
estimate where a maximum or minimum of some funct
has occurred. While in principle this is simple, time ser
that are very complex or noise corrupted can make th
difficult task. One sometimes has to choose between w
could be a sharp but specious minimum caused by noise
what appears to be a more general trend. These comp
tions of interpretation can lead to conflicting results. This i
problem that we have considered in our earlier work on
timating lag using the minimum of mutual information@43#.
In that contribution, we suggested that the minimum mig
be estimated by first filtering the mutual information fun
tion.

Another disadvantage of the methods of Gao and Zhe
Schuster, and characteristic length is that, in addition to
cating an extremum, one needs to decide if a signific
change has occurred as the embedding dimension is
creased. Potential difficulties in this regard can be seen in
diagrams of Sec. III. As originally published, these metho
require subjective assessments that could cause diffe
conclusions to be drawn from the same calculations. Glo
false nearest neighbors has an advantage over these me
because the indicated choice of embedding dimension is
minimum dimension for which the number of false near
neighbors is zero or consistently below some explic
specifiable threshold. There is no uncertainty in the interp
tation of the results. Also, if an efficientN logN procedure is
used to locate nearest neighbors, the method of global f
nearest neighbors is significantly faster than the others.

We conclude by reiterating a limitation of this investig
tion that was made in the Introduction. These compara
computations have identified global false nearest neighb
combined with the first minimum of the mutual informatio
function as the best procedure for identifying embedding
rameters for these data. Strictly, these results are valid
for these data and these specific tests. While it is hoped
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these results provide generally useful guidelines, this ge
alization has not been demonstrated mathematically.
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APPENDIX: EMBEDDING OBSERVED DATA

Let the set$x1 ,x2 ,x3 ,...%, xjPR, @1# denote the sequen
tial measurements of an observed signal. They can be vol
values recorded from an EEG or a sequence of heart in
beat intervals. These values are used to create a set of
bedded points$Xj%PRm, where

Xj5~xj ,xj 11 ,xj 12 ,...,xj 1m21!

~the case of a nonunitary value of the lag will be conside
presently!. The parameterm is the embedding dimension
The criterion for selectingm and generalizations of the em
bedding procedure will be discussed presently. The tim
dependent behavior of$Xj% is the trajectory in an
m-dimensional space specified byX1→X2→X3→¯ . The
analysis of the original time series$xj% proceeds as an ex
amination of the geometry of them-dimensional set$Xj%.
This is motivated by the Takens-Man˜é embedding theorem
@1,2#, which shows that the dynamical properties of the s
tem that generated the observed signal are reflected in$Xj%.
A simplified statement of the theorem follows.

It is assumed that the observed signal is generated b
dynamical system composed ofv real variables. For com-
plex systems,v will be very large, and not allv variables
will be directly observable. As a function of time the dy
namical system moves on a compact behavior spaceP which
is a subset ofRv. The compactness~bounded and closed! of
the behavior space is an assumption. However, we co
never contradict it with real data.P is also called the state
space or the phase space. In abstract terms the dynam
system is a continuous mapC acting on the behavior space
C:P→P. For any given initial pointy, yPP#Rv, the state
of the system at timet is given by C t(y). The object of
signal analysis is to infer properties ofC from $xj%, in this
case by an examination of$Xj%.

Let yjPP denote the position of the true system at thei th
sample time. The valuexjPR1 is the value of the observe
scalar variable at that time. It is assumed thatxj is related to
yj by a smooth mapc, c:P→R1, such thatc(yj )5xj for all
j. Additionally, it is assumed that the set ofyj ’s correspond-
ing to the observedxj ’s forms a dense subset ofP. F is
defined as follows. For any integerm, m.2v, define
F:P#Rv→Rm by
0-11
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F~y!5„c~y!,c~C~y!!…,c„C2~c!…,...,c„Cm21~y!….

SinceC(yj )5yj 11 andc(yj )5xj

F~yj !5~xj ,xj 11 ,xj 12 ,...,xj 1m21!.

Theorem. ~1! For almost anyC andc, F is an embedding.
That is, P is diffeomorphic to its image underF. ~2! The
continuous extension mapXj→Xj 11 corresponds, under th
diffeomorphism, to the original mapC. Therefore, the ob-
served trajectoryXj→Xj 11 is intimately related to the true
high dimensional systemC. Specifically, the relationship is
diffeomorphism ~a differentiable function with a differen
tiable inverse!. Properties ofXj→Xj 11 as established by ob
served data will, up to a diffeomorphism, also be true ofC.
Thus if the conditions of the theorem are met, we can m
meaningful inferences aboutC from $Xj%.

This is a remarkable result. It states, subject to the co
tions of the theorem, that we can perform an analysis of
v-dimensional dynamical system based on observations
single variable. However, in the real world the conditions
the theorem are never met. The crucial assumption is tha
set ofyj ’s corresponding to the observedxj ’s forms a dense
subset of behavior spaceP. This is clearly impossible given
a finite data set$xj%. Nonetheless, as an approximation,Xj
→Xj 11 can provide valuable insights intoC. Since$xj% is
finite, a number of practical issues arise. Recall the defini
of Xj :

Xj5~xj ,xj 11 ,xj 12 ,...,xj 1m21!.

A revision of this definition that incorporates a lagL, L
PI 1, can help space the observed data through the app
S

D.

nk

s
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mate behavior space and thus better approximate the de
requirement of the theorem:

Xj5~xj ,xj 1L ,xj 12L ,...,xj 1~m21!L!.

This can be addressed in the preceding analysis by inco
rating a dependence onL into the definition ofC.

Limitations imposed by the finite size of$xj% can be ad-
dressed in part by observing more than one dynamical v
able. The embedding procedure can be generalized to in
porate multichannel data@4#. Suppose data are recorded fro
K observed variables. Let$xj

i % denote the time series of th
i th channel:

$xj
i %5~x1

i ,x2
i ,x3

i ,...!.

The easiest procedure is to construct the embedded set inRK

by

Xj5~xj
i ,xj

2,...,xj
K!.

For example, if three variablesw, x, andy are recorded,$Xj%
can be formed inR3 by

Xj5~wj ,xj ,yj !.

This procedure can fail ifK, the number of observed vari
ables, is less than the effective dimension of the genera
dynamical system. In that case, the procedure for embed
scalar data to an arbitrary dimension can be generalized

Xj5~xj
1,xj

2,...,xj
K ,xj 11

1 ,xj 11
2 ,...,xj 11

K ,...!.
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